The Geometry of Quantum Gravity
Early Studies
My journey to the leading edge of Modern Physics and Quantum Gravity began when I was a teenager.
I had discovered that the human body had an energetic field. While the primary aspects and functionality of this field were explored in detail by a variety of cultural and spiritual traditions around the world, I realized it was entirely missing from the current scientific framework, and absent from my High School education.
Rather casting doubt on my experiences, this absence prompted my deeper investigation. I began to notice that many of the mysteries in sciences from biology to geology, astronomy to chemistry, had fundamental patterns that were similar, and also showed up in metaphysical studies of the “Ether” throughout the ages.
Like a detective sensing a secret waiting to be revealed, I decided to dive into a study of modern physics to see if there were any studies that could explain these patterns.
I began with a study of the macrocosmic world through Special and General Relativity, gaining a deeper understanding of the relative nature of spacetime, and our observation within it. Einstein pointed out that Gravity is simply the curvature of spacetime, and that acceleration is indistinguishable from Gravity (often explained in shorthand as “G-Force” by pilots and race-car drivers).
Einstein also explained that it would take infinite energy to accelerate to the speed of light, as this acceleration warps the fabric of Spacetime (creates curvature). The more you accelerate, the more Gravity it creates by curving spacetime, and the more energy it takes to push the envelope further.
I then dove into the study of the microcosm, and the strange world of Quantum Mechanics. QM established a few fundamental beliefs about reality, primarily through the Copenhagen Interpretation of the famous “double-slit” experiment. Scientists at the time were stumped by the results of the experiment. How could you shoot single particles at two splits, and witness waves with interference patterns coming out the other side? Their assessment: energy must act as both a particle and a wave. They then attempted to work out some calculations for this, and discovered that if you attempt to define the position of energy, you get a result that accurately describes a particle. If you attempt to discover the angular momentum or information about the movement of energy, you get information resembling a wave. The problem? You can’t do both simultaneously. The more precise you attempt to discover position, the more fuzzy its momentum gets, and vice-versa.
They called this the “Uncertainty Principle,” and it’s a major cornerstone of all Quantum Mechanics. Going forward, Quantum Mechanics has worked to discover all manner of particles, and developed highly complex equations to predict the probability of energy in certain states. However, I quickly discovered that this path of research diverged so drastically from the macrocosmic studies of Relativity that there seemed to be very little hope in true reconciliation.
To find a bridge, I began to explore studies in Quantum Gravity. How could one explain the curvature of spacetime, and effects of Gravity at large scales through the interactions of miniscule particles?
A Unified Picture Emerges
I read Lee Smolin’s book, Three Roads to Quantum Gravity. In it, I discovered that there was actually a great deal of progress made in bridging these macrocosmic and microcosmic worlds. Lee and his colleagues had begun to describe spacetime itself as a background independent system, meaning that seemingly empty Spacetime could be a lattice-like fabric filled with interconnected grids of energy. This would mean that the particles and waves we experience are just emergent patterns from this fundamental fabric. Immediately, I knew he was on the right track, as patterns in the fundamental energy flow and structure of Spacetime is exactly what I had been considering as a solution to describe how vastly different fields in science would have the same geometric patterns arising within them.
At this time, I also did a lot of reading into String Theory. While I found very important synergy in the idea that the most fundamental aspect of the universe is the vibration of incomprehensibly small strings, I was also turned off by certain aspects of the theory. Ideas that these strings are loops that float around freely in a void and vibrate through infinite modes, or stack and loop through 10 dimensions, or entangle themselves in shapes that can’t accurately be understood or modeled in 3D, all seemed like a waste of time to me. I found many other physicists who thought similarly, but found some inherent beauty in the mathematics of string theory. I found beauty in its study of vibrational resonance.
I began to see a unified picture emerging. What if the same fundamental patterns I had witnessed in nature through biology, geology, and cosmology were the basic patterns in the lace of spacetime? Spiral galaxies, hurricanes and nautilus shells map precisely to a spiral generated by the Phi ratio, but at vastly different scales. What if this pattern and others, like the “flower of life” or laws of equilibrium in circle packing were actually starting at the level of the fabric of space itself, and then having a fractal impact across scales until we see it in the blooming of a flower or the spinning vortices of wind.
I had already mapped the fundamental geometric patterns I was finding in every field of science, as well as nearly every spiritual tradition on the Planet. The primary patterns I found could be simplified as three basic geometries and their constituents: the pentagram (5-pointed-star), the hexagram (6-pointed-star) and the equilateral triangles that form it, and the heptagram (7-pointed-star).

The pentagram contains the Phi ratio, which describes meteorological patterns in weather like tornadoes and hurricanes, growing patterns in plants, galactic spiral arcs, and even the wavelength to width ratio of our DNA.



It turns out that when you consider these geometries in terms of a fundamental energy lattice in the fabric of space, as the quantum geometry of the vacuum, they describe the most basic operations of a highly energized system in nearly perfect balance.
First, let's look at the fundamental structure of the fabric of space-time. If we consider the most basic possible information structures at the Planck scale, a Planck length line is the most fundamental representation of distance (1D), and a triangle made from three of these lines would form the most fundamental structure of area (2D). Note that a triangle also forms the most stable arrangement of energy in a highly energized lattice, and they can stack in a fractal (and bidirectional) arrangement. Moving up to the next most fundamental dimensional structure, we obtain a Planck scale tetrahedron (3D). From here, we obtain a component that can form a lattice structure that has both planar surfaces and extruded depth, both of which are measured in both space and time.
Each unit of Planck space is also a unit of time, since the distance itself cannot exist in measurement without some measure of time. In this way, we could say that the dimension of time (4D) is embedded, entangled, or folded into each of these three spacial dimensions.
It is also important to look at our most fundamental building block, the triangle, more closely. Through the laws of thermodynamics, we know that energy and matter is always trying to reach the most balanced state. Heat will continue to flow into cool space until the temperature is equalized. Spheres thrown into a box will continue to compact with each other until they reach the maximum state of spacial density, which at the same time is the lowest state of potential energy (or mobility).
When discussing a lattice of energy, each node (or intersection point) will try to reach the position in which it has the most equal balance with all surrounding points. This is simply another way of describing why the equilateral triangle, and its 3D projection, the tetrahedron, is the most fundamental and equalized structural form for space-time.
If energy, and thus the fabric of spacetime, is always trying to maintain an equilibrium state, then any condition outside of that state of equilibrium will produce force (an influence that may cause a body to accelerate, or produce Gravity).
From here, we may begin to review each of the permutations of this fundamental lattice that would produce different levels of force, and thus produce Gravity.
Curvature 1:

We often see this in the surface of domes. Most of the triangles in the dome structure are balanced with each other, forming hexagons, yet what causes the curvature of the dome itself is the placement of the joints where only five triangles come together (a Pentagonal plate). If these joints are close together (with less triangles between them) the curvature will be greater, and the dome will be smaller. The smallest dome of this form would simply be an Icosahedron. As the Pentagonal plates move further apart, the dome's curvature will be reduced. There are usually only a few Pentagonal plates spread out at extreme distances to form a "superdome" like those found on some stadiums.
Curvature 2:

This effect is intimately involved with the series of energetic alterations that produce physical matter from energy within the fabric of space-time, but we will not go into depth here on that process. However, we must recognize that at this level of curvature there is no longer a gradual spherical curve on spacetime, just an abrupt compression point of energy. This may b e the key to the vector equilibrium form, and may form the entry point into a black hole or singularity.
Producing Spin:
Any time a triangle is "removed" from one plane of equilibrium, or from a curvature, it cannot simply be "added" to another Hexagonal lattice. If you attempt to insert an additional equilateral triangle into a Hexagon, you will find that there is no amount of angular adjustment you can make to allow it to fit.
Therefore one of two things must happen:
(1) The equilateral triangles in the set "warp" and become acute triangles in order to accomodate the new trianglular energy field, which would take a vast amount of energy since these structures want to remain in equilibrium and this would change the balance of the entire fabric.
(2) The equilateral triangle connects to one of the triangles in the set, and the new triangle now "rotates" into a position connecting with one of the other vector equilibrium planes. The initial act of this rotation into position would cause the torsion forces in the fabric of space-time described by Nassim Haramein and others.
Being that the latter option would require far less energy, it is certainly the more likely scenario, and generates other notable effects. First of all, the rotation of a new triangle, or more specifically a single "point" of force (since it is actually only one node or intersection on the structure that needs to be removed) from one surface into any other plane of the Hexagonal vector equilibrium would produce a chain reaction, in which that Hexagonal plane would then transfer one of its own "points" to the next adjacent plane, and so on.
It is also important to note that the origin point for radiated energy would also be missing an energy node when one is radiated, forming curvature and gravity wherever there is radiation and spin (or electromagnetism).
Frequency and Change:
Now if we consider each one of the individual points in this lattice, we see that while in a vector equilibrium state, there are 12 radials extending to other points in the matrix along spacial dimensions. The points are intersections of energy, bridging dimensions. Each point in the lattice may fluxuate as energy passes through it, as vibration travels through these dimensional radials.
The state of a point or intersection at any given moment is determined by the combination of vibrations moving through it. Each structural intersection is not only a position, but also resonates at a specific frequency. In this way, even the planck scale structure of space-time is not a static and rigid system, but is flexible and acts in accordance with the properties of waveforms and fluid dynamics.
Energy will always attempt to reach an equilibrium state, so the dynamics at this scale are in a constant flux, working to return balance to the fundamental fabric. Each change that precipitates this "returning" ripples through the fabric, and can be seen from microcosmic to macrocosmic scales.
Summary
Many of these ideas were drafted over ten years ago, but they are even more relevant to my research today as I work with the Resonance Science Foundation and Nassim Haramein. I'm providing this article as an additional resource to people taking the Delegate LVL1 course, in order to set the stage for understanding more of the dynamics of the geometry of space. As you may have seen in this article, visualizing structures through 2D geometries can be useful when those geometries are reapplied to seeing the 3D forms of which they are component parts. In a later article I will apply these principles to a complete discussion on the geometry of the proton itself, based on the mathematics of Nassim Haramein's recent paper, "Quantum Gravity and the Holographic Mass," as well as my own research.









Much gratitude brother Adam for the dynamic, Geometric explanation of the Universe as it Unifies us to the macro/micro, equilibrium brought through fluidity and careful warm words, this opens interplay and imagination as human vessels, we are excited to read on and continue this Awareness.
Thank you, Adam. It was easy to visualize with your helpful explanations.
This was very helpful. I will be rereading it and thinking about it. I also found a short YouTube video of Fuller demonstrating the isotropic vector equilibrium useful in seeing the cascading collapse of the forms into each new shape. Your explanations in this article helped me see the process differently. Understanding this fundamental process requires learning to see the geometric forms in a new way. I encourage anyone new to these ideas to try making a model of the isocuboctohedron (pictured above right) and play with it. I made a very pathetic model out of qtips and white glue. It worked well enough to begin to understand the dynamics.
I am sorry, i don’t speak american
Thanks Adam this helps, now to go over it all again including the inter 3 mod. Lol LOVE it
Very clear presentation. Especially liked the statement… “If energy, and thus the fabric of spacetime, is always trying to maintain an equilibrium state, then any condition outside that state of equilibrium will produce force (an influence that may cause a body to accelerate, or produce Gravity)” …which really helps us to better understand lattice dynamics. Thanks!
Thanks! Very concise and clear article.
Merci Adam. C’est une base tres utile pour la comprehension de la suite.
Thank you for describing the vibrational form of the fabric and the spin.
This is so elegant!
Great description! It helped me gain clarity on the subject. Thank you.
Oh my! Your article is so profoundly organized. I appreciate this so much. To understand the origin of spin as a triangle connecting at a vector and spinning into position is calming to the mind. Like a child’s game. thank you.
Phoenix
Thanks. This worked as an excellent description for me!
Hi Adam, thank you for a good article, but I would like to see any visualization of “Producing Spin” too, same with Mr./Ms.Well Blackmon. I think it would be very helpful to get deeper understanding.
As I was reading the section on Producing Spin, I was having a difficult time visualizing the way “the new triangle rotates into position”. Any clarification or graphics that might animate this concept?
“2) The equilateral triangle connects to one of the triangles in the set, and the new triangle now “rotates” into a position connecting with one of the other vector equilibrium planes. The initial act of this rotation into position would cause the torsion forces in the fabric of space-time described by Nassim Haramein and others.”
“Each unit of Planck space is also a unit of time, since the distance
itself cannot exist in measurement without some measure of time. In this
way, we could say that the dimension of time (4D) is embedded,
entangled, or folded into each of these three spacial dimensions.”
In the same way, consciousness or ‘person’ must also be embedded into the spatial dimensions – as without ‘person’ who is there to measure the distance in time? Time is a mental measurement of the motivity of action – time cannot exist without consciousness. Time, space and consciousness are inseparable. Infinite consciousness is the vibrationless matrix out of which all the vibrations emerge.
Please see “Commentary on Ananda Sutram” (from Amazon) which is a commentary on the sutras or principles given by sage Shrii Shrii Anandamurti – which details the emergence of the creation in triangular vortices of three forces from infinite consciousness. It can be found on amazon.
Without including consciousness, we cannot understand matter fully. Unit consciousness re-emerges from Infinite consciousness in the centre of the traingles of forces, when the resultant force is interial, forming a nucleus. The underlying Infinite consciousness is all-pervading. Life emerges as a curvature or wave from one of the apexes of the triangle. The underlying matrix is linear, while life is described in curves, with systaltic flow. So as with the flower of life, which is a curvilinear form, there is an underlying linear matrix of forces. .
Thanks for this, Inga. Seeing consciousness embedded in spacetime makes sense to me. Nassim agrees that the universe itself IS conscious. I don’t see how it could be otherwise. It’s good to have a model for it.
Thank you for this additional resource. I really appreciated how this presentation allowed me to ‘see’
Enjoyed the article. Pieces an evolution of the geometric understanding of space/time well and is expressed in a simplified, relatively easy to digest manner. Thanks.
This geometry certainly make sense to think about in relation to the 3D and 4D world that we live in. Am I to understand that at each node there is a tiny blackhole? And that each line is a vibration much like we see in cymatics? Is that correct?
Also, I found this documentary (Big Bang Machine) on PBS very interesting in that they were using these tetrahedrons, octahedrons, and icosahedrons as graphics in the explanation of the standard model. I find it interesting that they don’t reference these shapes directly but “hint” at them with the graphics. It’s like a subliminal message that the standard model is not complete and that these sacred geometries are the key. (http://www.pbs.org/wgbh/nova/physics/big-bang-machine.html)
Hi Adam, so I read your article for the second iteration right now, and my understanding began to spin along with the vacuum fabric…hopefully a third reading will bring me to some resting equilibrium vector…or maybe in an even faster spin…but I am confident of possessing enough wormholes to manage this amount of information if I compute with all the protons of my brain ;~)))
Yet, thank you so much for such a brilliant article…awaiting to read the next one